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Column

* Column is an object that will absorb compressive
axial and eccentric load and its longitudinal
dimension is very much greater than lateral
dimension (at least 10 times.)

* It is so slender compared to its length that under
gradually increasing loads it fails by buckling at
loads considerably less than those required to
cause failure by crushing.



Column

* An ideal column is assumed to

Unavoidable or
be homogeneous member of accidental
. ] eccentnicity
constant cross section that is
initially straight and is subjected ~Actual center line due
. . to initial crookedness
to axial compressive loads. (greatly exaggerated)
e Actual columns always have e=eccentricity
- : : of Pata
small |m!oerfect|ons of material _ _ trpical section
and fabrication, as well as
unavoidable accidental "~ Mathematically
eccentricities of load, which straight center line
produce the effect shown in fig.




Types of columns

* Long or slender column: long columns fail by
buckling or excessive lateral bending.

* Intermediate column: it fails by a combination of
buckling and crushing.

* Sometimes the short compression block is also
considered as third group. It fails due to crushing.



Critical load

* |t is the maximum axial load
to which a column can be
subjected and still remain
straight, although in such an
unstable condition that a
slight sideways thrust will
cause it to bow out.

* Here, the column wiill
elastically fail.




Long column by Euler’s formula

* The figure shows the centerline of column in
equilibrium under the action of its critical load P.
The column has hinged ends restrained against
lateral movement.

* The maximum deflection 6 is so small that there is
no appreciable difference between the original
length of the column and its projection on a
vertical plane.

* So the slope dy/dx is so small that we may apply
the approximate differential equation of the
elastic curve of a beam, that is,

dYy . :
El -(-1-;- =M=P(-y)=-Py

x




Long column by Euler’s formula

dy .

* This equation can not be integrated directly,
because M is not a function of x.

* The equation is similar to the equation of a simple
vibrating body, \
mﬂs ~kx

dt’

* For which, the solution is,

x=Gsn(1\/%) 4 coos (1 /%)
m m



Long column by Euler’s formula

* By analogy, the solution of our equation can be written as,

J’=Clsin(x \/;)"'Czcns(x \/EE)

* At x=0, y=0, so we get, C,=0
* At x=L, y=0, so we get,

P
O-Clsm(L \/;)

* Now, either C,=0 (it means no bending in column),

Or,
L\/§=nr n=0,1,2,3,...)

Elxr*

Or, P:nz-—i:i-



Long column by Euler’s formula

-1
, Elr”
Fe=mT Pk P=oh
* For n=0, P=0, which is meaningless.
* For other values of n, the column bends as
shown in fig. |
* The most important is fig (a). '
* The others occur with larger loads and are
possible only if the column is braced at
the middle or third points respectively.
P, B
* The critical load for a hinged-ended mn:z: @n=3:
column is therefore, midpoint third point
bracing bracing

Elxr*
P T




Long column by Euler’s formula

* For columns of both ends fixed (fig a),
the free body diagram shows that the ¥’
middle half of the column is equivalent a5 M
to a hinged column having an effective
length L.=L/2, so we get,

Elx* EIx* __EIx’

4 ——
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* This is four times the strength of the B | S
- (b

column if its ends are hinged. - :




Long column by Euler’s formula

* For columns of one end fixed and one ¥ g
end free or flagpole type of column, 2 M
fig.(b) can be best described. The
critical loads on it (fig b ) and on the
fixed ended column (fig a) are equal,
when the fixed ended column is four
times as long as the flagpole. So for
flagpole column, the effective length,

L= 0.5Lx4=2L

So, we get,
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Long column by Euler’s formula

* For column with one end fixed | P
and one end hinged, the

effective length, -
Le=0.7l_ L¢=0.7L
SO) ¥ ' 1
EIx*  EIx? Elx? N i_




Long column by Euler’s formula

* SO in summary, we can write,

p=

Elx* _Elr?

N -
I? L:

End conditions

N= Number of times
strength of hinged

Le= Effective length

other free

columns
Fixed ends 4 0.5L
One end fixed, the 2 0.7L
other hinged
Both end hinged 1 L
One end fixed, the 0.25 2L




EFuler’s formula: limitations

* The value of ‘I’ in the column formulas is always the
least moment of inertia of the cross section. Any
tendency to buckle, therefore, occurs about the
least axis of inertia of the cross section.

* The critical load that causes buckling depend not
on the strength of the material, but only on its
dimensions and modulus of elasticity.

* Also for good design, a cross section have as large a
moment of inertia as possible.

* The stress accompanying the bending that occurs
during buckling must not exceed the proportional
limit.



EFuler’s formula: limitations

* We can write,

[ = Ar?

where, | =Least moment of inertia
A= Cross-sectional area

r= Least radius of gyration

For hinged ended columns, Euler’s equation becomes,

P  Em’

A (5
r
Here, (P/A)= average stress in column when carrying critical
load, often called critical stress.

(L/r)= slenderness ratio



Euler’s formula: limitations

* We define long columns as those for which Euler’s
formula can be used. The limiting stress for long
column is the proportional limit of the column
material.

* Let, for steel, Proportional limit=200 MPa,
E=200 GP3,
So, (L/r)= 100

* Below the above value of (L/r), the average stress
exceeds the proportional limit. So the (L/r)<100,
Euler’s formula is not valid.

* The limiting value of slenderness ratio is called
critical slenderness ratio.



Euler’s formula: limitations

F S

Euler's curve

P_ _En?
ALt




ntermediate column: Johnson’s
formula

* |f the slenderness ratio of a column is less than its
critical value, the column is treated as intermediate
column or short compression block.

e Several empirical equations are available for
intermediate and short columns. Johnson’s
parabolic formula is mostly used.

* The equation is given by,

| -?_
+ = 0y - b(L)



Johnson’s parabolic formula

/
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Johnson’s parabolic formula

* The value of (L./r) at the intersection of Johnson’s
curve and Euler’s curve is called critical slenderness
ratio, (L./r). or C,

* At this point, it is found that, (P/A)= ay/z
e So, from Euler’s formula,

(._'L}_—\ 3 \{; 2 x% E

T Je v
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* From Johnson’s equation, | _ T
2 ¢,”

.
eSoweget, | P | (Le/7)
R o e >




AISC specifications

* American Iron and Steel Construction (AISC) provides the following
specifications for columns made of structural steel:

LQW'ZE.*
CO - S
Tip

e Critical slenderness ratio:

- 2
* Euler’s equation: ) B Y A =

e

ST/ VA
79
e Parabolic equation: X - ,;%[[_ @e/lt) j
N ' _ Q&‘L

A 9.

Where,

F-S- —Z——- + 2 (’(ﬁ/m) 8 ('(e/n)}

8 ¢ EJ ) ; 8 (:'_',;3



Problem

7.21 (quamrul)

 Select the lightest W shape for a pin ended column
of length 4 m that will carry a central load of 450
kN. Use AISC specifications.
o, =360 MPa and E = 200 GPa.

(Use table 8.2, page: 561, singer’s book)



Problem

E 7.6 (quamrul)

* A column with hinge ends is made of W250x167
section. Find the safe axial load that can be carried
when the length is 9m.

o, = 380 MPa and E = 200 GPa.
* Solve the problem using Euler and Johnson’s

formula.

* Solve using AISC specifications.



Problem#

A 6m long column is fabricated from 20 mm thick
steel plate to make a square box section of side
dimension 100 mm. If the column is fixed at both
ends, determine the safe central load that can be
carried by the column.

o, =400 MPa and E = 200 GPa.



